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An analysis of the flow over a leading edge with distributed roughness is presented. 
The analysis is focused on a small neighbourhood of the stagnation line. The 
roughness is assumed to have a small amplitude and to be symmetric with respect to 
the stagnation line. Results show that roughness acts as a source of streamwise 
vorticity. The existence of a universal form of the flow field for long-wavelength 
roughness is demonstrated. It is shown that surface stresses tend to eliminate 
roughness if erosion or wall flexibility are admitted. The heat flow tends to 
concentrate at the tips of the roughness and this may lead to the generation of large 
thermal stresses along the surface of the leading edge. 

1. Introduction 
The understanding of the laminar-turbulent transition process in boundary layers 

is still one of the open questions in fluid mechanics, mainly because of the large 
number of possibly important factors present. While a tremendous amount of work 
has been devoted to the analysis of stability of boundary layers, relatively little effort 
has been spent on understanding mechanisms governing the so-called receptivity 
problem, i.e. mechanisms by which disturbances enter the boundary layer (Reshotko 
1976). Goldstein (1983) was the first to demonstrate a process through which free- 
stream disturbances can enter the boundary layer around the leading edge ; however, 
the stagnation flow region was excluded from consideration. The analysis of flow 
close to a stagnation line is of primary importance since this is where the boundary 
layer originates and where the disturbances could first penetrate into it. The leading- 
edge boundary layer is characterized by a high divergence, i.e. velocity components 
normal and tangential to the wall are of the same order, and by a very small 
thickness. The second factor makes it very susceptible to the presence of surface 
roughness. Obviously, if the leading-edge flow cannot be kept laminar and stable, it 
is unlikely that the boundary layer further downstream can be kept laminar. This 
has been vividly demonstrated in the case of the so-called ‘attachment line (or 
leading edge) contamination ’ (Pfenninger 1977 ; Poll 1979). 

It has been shown that large surface roughness a t  the leading edge could trip the 
boundary layer and lead to a turbulent flow over a whole body (Poll 1979). Small 
surface roughness modifies the boundary layer and makes it more susceptible to 
different types of instability. Surface roughness can, for example, generate spanwise 
periodicity of the flow and this, in turn, could accelerate the growth of 
Tollmien-Schlichting waves further downstream. Interaction mechanisms between 



J .  M .  Floryan and U. Dallmann 

travelling waves and stationary spanwise periodic structures have been shown to 
lead to a rapid growth of Tollmien-Schlichting waves (Nayfeh 1981 ; Srivastava & 
Dallmann 1987) as well as Gortler vortices (Floryan & Saric 1984). I n  the case of a 
three-dimensional boundary layer, roughness-generated spanwise periodicity could 
affect cross-flow instabilities through an interaction mechanism of the type studied 
by Fischer & Dallmann (1987). The existence of coupling between very small leading- 
edge imperfections and the disturbance structure furt,her downstream has been 
confirmed by recent experiments on the stability of three-dimensional boundary 
layers (Nitschke-Kowsky & Bippes 1988 ; Nitschke-Kowsky 1986). It has been found 
that the disturbance structure is fixed with respect to the plate when the plate was 
moved in the spanwise direction in the wind tunnel, and this coupling could not be 
eliminated by polishing of the leading edge using standard methods (H. Bippes 1988, 
private communication). 

Stagnation flow atJ the leading edge is subject to its own peculiar instability which 
manifests itself by the appearance of counter-rotating vortex pairs with their axes 
parallel to  the streamwise direction (see Morkovin 1979 for a review). It has been 
suggested by Gortler (1955) that the secondary flow results from the action of 
centrifugal forces. Wilson & Gladwell (1978) havc shown that the flow is linearly 
stable, if the disturbances originate from within the boundary layer. Lyell & Huerre 
(1985) have suggested that the flow can be destabilized through nonlinear mode 
coupling if the level of these disturbances is sufficiently high, but Spalart (1989) was 
unable to find such nonlinear effects in his numerical experiments and suggested that 
results of Lyell & Huerre (1985) were artifacts of their method of solution. Sutera, 
Meader & Kestin (1963) and Sutera (1965) have put forward an alternative theory, 
which requires the presence in the oncoming stream of a certain type of disturbance, 
which is amplified by the so-called ' vorticity amplification mechanism ' while being 
swept towards the body. In  a recent experiment, Kottke (1986) and Bottcher (1987) 
were able to find vortices only if disturbances produced by screens were present 
upstream of the body. The spacing of the vortex pairs was found to be equal to that 
of the jets in the wake of the screen. Thus, the flow in the stagnation region was 
merely an image of the flow downstream of the screens and no indication of the 
existence of a stagnation-point instability was found. Surface roughness could be an 
alternative source of disturbances and could lead to the appearance of vortices either 
through the vorticity amplification mechanism or through some type of interaction, 
even if the oncoming flow is free of disturbances. Thus, surface roughness can modify 
stagnation flow directly, by forcing it to conform to the geometry of the surface, and 
indirectly, by providing a disturbance environment necessary to trigger an instability 
mechanism leading to the appearance of the secondary flow. 

It is known that disturbances present in the oncoming stream have a very strong 
effect on heat transfer in the stagnation region with very little change in skin friction 
(Kestin 1966). While the vorticity amplification mechanism explains qualitatively 
certain observed features (Sutera et al. 1963; Sutera 1965), it fails to explain the 
observed phenomena completely (Kestin 1966). It is also known that surface 
roughness enhances heat transfer (Morgan 1973) ; however, the mechanics of the 
process is not clear. It is not certain how strong this effect is in the stagnation region, 
since no detailed measurements dealing with this particular flow area are available. 
It remains to postulate that the changes in the heat transfer in the stagnation region 
could occur because of additional mixing caused by the irregularities of the surface 
or, perhaps, by a secondary flow which is triggered by the disturbance environment 
resulting from the presence of the surface roughness. 
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FIGURE 1. Schematic diagram of a stagnation flow over a plate with a wavy surface roughness. 

The purpose of this paper is to analyse modifications of the stagnation flow caused 
by the presence of a small distributed surface roughness. The resulting non-uniform 
flow might be subject to an instability mechanism which is different from the 
classical one studied previously (Wilson & Gladwell 1978). The results provide initial 
conditions necessary for tracking effects of surface roughness further downstream. 
Further applications include the determination of the increase of heat transfer due 
to the presence of roughness, and the determination of shear and normal stress 
increases with applications to erosion and ablation. Section 2 describes the 
formulation of the governing equations. Section 3 summarizes results dealing with 
the stagnation flow over a smooth plate needed for further analysis. Section 4 
discusses disturbance equations and methods used for determination of their 
solutions. Section 5 provides discussion of the effects associated with the presence of 
surface roughness, 

2. Problem formulation 
We consider a steady, incompressible, constant-properties flow over an infinite 

plate with a distributed roughness on its surface. The plate is oriented normal to the 
direction of an initially uniform stream. The geometry of the flow and the coordinate 
system are indicated in figure 1. The plate is essentially in the (x,z)-plane and the 
basic flow in the absence of roughness is two-dimensional in the (x, y)-plane, the x- 
axis being the streamwise direction along the plate, and the z-axis the spanwise 
direction. The stagnation streamline coincides with the y-axis. The configuration 
described above provides a good approximation of a flow in the neighbourhood of the 
forward stagnation point on cylindrical bodies with axis normal to the direction of 
the oncoming stream (Morkovin 1979). 

We consider the amplitude of the roughness to be small compared with the 
boundary-layer thickness. The roughness produces a three-dimensional modification 
of the flow field which, in the limit of small roughness amplitude, is described by 
linear equations. We consider the roughness to be distributed, i.e. its variations are 
representable by means of a Fourier decomposition. We limit our considerations to 
a small neighbourhood of the stagnation line and roughnesses that are symmetric 
with respect to  the (y, 2)-plane. Since variations of the shape of the roughness can also 
be represented as power series in terms of distance from the stagnation line, the 
roughness becomes independent of x close to the stagnation line. It is then sufficient 
to consider the flow over a wall described by an equation (see figure 1) 

y = €sin (az), (2.1) 
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while the flow over a roughness having an arbitrary amplitude distribution in the 
spanwise direction can be represented by a Fourier superposition of such ‘modal’ 
flows. 

The model problem considered above is fairly general and the results can be used 
to describe flows over symmetric but otherwise arbitrary rough leading edges. The 
validity of the results is restricted to a small neighbourhood of the stagnation line. 
The effects of variations of the form of the roughness in the streamwise direction can 
be accounted for by considering the full expansions in terms of distance away from 
the stagnation line. Such a procedure would be similar to the Blasius series 
expansions in boundary-layer theory. As stated before, the solution presented here 
is limited only to the first term of such an expansion. While the analysis of the 
roughness effects is the main motivation for our work, the model problem described 
above also corresponds to a flow over an infinite flat plate with riblets of fixed shape 
extending to & co in the streamwise direction, i.e. the flow over an infinite flat plate 
with riblets and flow over a rough leading edge are identical close to the stagnation 
line. 

We select the boundary-layer thickness 6 as a lengthscale and the upstream 
velocity V, as a velocity scale. Here, 6 = (v/K)i where v stands for kinematic 
viscosity and K is defined by the character of the velocity field away from the plate, 
i.e. u* +Kx* as y* + co. Asterisks denote dimensional quantities and u is the velocity 
component in the x-direction. We define the dimensionless temperature as T = 
(T* - T,)/T,, where T, stands for the temperature of the oncoming stream and T, is 
the temperature scale. Here T, = T, - T, in the case of an isothermal plate and T,  = 
h6 in the case of a constant heat flux across the plate. T, is the plate temperature and 
h denotes the dimensional temperature gradient at the wall. We also rescale the 
dimensionless x-coordinate, i.e. we let X = x/Re, Re being the Reynolds number 
based on V, and 6. 

We assume that each flow quantity is the sum of two parts, a mean part 
corresponding to stagnation flow over a flat plate and a small-disturbance part. 
Equation (2.1) demands that any linear disturbance must vary sinusoidally with the 
spanwise distance. Hence, we can express the flow quantities as 

\ u(X, y, z )  = X[U(y) + m(y) sin ( a x )  + 0 ( e 2 ) ] ,  

I 1 
Re v(X, y, z )  = - [V(y) + E B ( ~ )  sin (az) + 0 ( s 2 ) ] ,  

1 
Re 

w(X, y, 2 )  = - [E@(y) cos (az) + 0 ( € 2 ) ] ,  

T(X, y, z )  = T(y) + e@(y) sin (az) + 0 ( e 2 ) ,  I 
where the X-dependence of the flow variables has been explicitly separated. Here 
(u, v, w) are velocity components in the (x, y, z )  directions respectively ; p denotes 
pressure, po = p(0 ,  0, z )  when E = 0;  (U,  V )  are undisturbed velocity components in 
the (x, y)-directions respectively ; ( g ,  8, a) are amplitudes of the disturbance velocity 
components in the (x, y, z )  directions respectively ; G denotes the pressure distribution 
of the undisturbed flow ; p is an amplitude of the pressure disturbance ; and T, @ are 
the temperature of the undisturbed fluid and an amplitude of the temperature 
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disturbance, respectively. In the above, E denotes the roughness amplitude and 
serves as an expansion parameter. It is very helpful to follow the behaviour of the 
x-component (streamwise) of vorticity, especially in view of the existence of the 
vorticity amplification mechanism. We shall call this component 52 and we shall refer 
to it as just ‘vorticity’ in the rest of the paper: 

k[ (Z ) I aw av 
ay a Z  

52(X,y,z) = --- = - 8 --av c o s ( a z ) + O ( ~ ~ )  . 

Substituting (2 .2 )  into the incompressible, constant-properties Navier-Stokes and 
continuity equations and the equation for energy transport without dissipation, and 
keeping only linear disturbance terms, we can express the field equations in the form : 

dG d2V dV 
- -- +V-, V--u2+1=0,  -- 

dY2 dY dY dY2 dy 

d2U dU basic flow 
-- 

d T  
P r V - - 0 ;  

d2T __- dV u+- = 0, 
dY dY2 dY 

disturbance flow 
d2ti d a  dU ~- V - - ( 2 U + a 2 ) t i =  -v, 
dY2 dY dy 

We also have 

(2 .4a,  b)  

(2 .4c,  d )  

( 2 . 5 ~ )  

(2 .5b)  

(2 .5c,  d )  

(2 .5e)  

(2 .6a,  b )  

In  the above, Pr denotes the Prandtl number. Note that (2 .4u-c)  are decoupled from 
( 2 . 4 d )  and ( 2 . 5 ~ 4 )  are decoupled from (2 .5e) .  

A t  the wall the no-slip and no-penetration conditions yield the boundary 
conditions 

U = V = O  at y=O,  (2 .7)  

, v=O, i i i = O  a t  y = O ,  
- dU u = -- 

dy 

where the condition for @ has been simplified by application of ( 2 . 4 ~ ) .  For the 
temperature field, we assume either an isothermal plate, 

T=O at y=O,  (2 .9)  

- d T  
@ = - -  at y = 0, 

dY 
(2.10) 
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or a plate with a constant heat transfer rate 
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d T  
- = 1  a t  y = O ,  
dY 

d@ - = 0  a t  y = O ,  
dY 

(2.11) 

(2.12) 

where the condition (2.12) has been simplified by applying (2.4d) and (2.7). In  
arriving a t  these boundary conditions, the actual boundary conditions were 
transferred to the mean position of the plate. This is justified when the roughness 
amplitude is small compared with the boundary-layer thickness (e $ 1) and the 
thickness of the disturbance layer (me 4 1). Far away from the plate the flow 
approaches potential isothermal stagnation flow and the effects of surface roughness 
become negligible, hence 

U + l  as y+m, (2.13) 

T+O as y-fco, (2.14) 

a-0, V + O ,  W - t O  as y+m,  (2.15) 

O + O  as y+m. (2.16) 

The additional stresses a t  the wall due to the presence of the roughness have the form 

I 1 
Re2 

AuYy = -[-p(O)+a]sin(az), 

(2.17) 

where pvZ, has been used as the appropriate scale and a = dU/dyly=o. The increase of 
the heat flow a t  the surface in the case of an isothermal plate is given 'as 

Aqn = - E- sin (az) ,  : /y_o (2.18) 

where qn is the heat flux in the direction normal to the plate. The modification of the 
wall temperature in the case of a plate with a constant heat flux is given as 

ATw = E [  1 + 0(0)] sin (az). (2.19) 

3. Flow over a smooth plate 
Stagnation flow over a smooth plate ( E  = 0) is described by ( 2 . 4 a ~ ~ )  with boundary 

conditions (2.7) and (2.13); this is the Hiemenz solution of the two-dimensional 
Navier-Stokes equat,ions. Here we summarize results required for the analysis of 
roughness effects. We introduce a stream function f 

u=--, df v=-f ,  
dY 



Flow over a leading edge with distributed roughness 

which leads to the boundary-value problem 

dG d2f df 
- = -+f--, 
dY dY2 dY 

635 

(3.3) 

The behaviour of the stream function in the neighbourhood of the plate (y+O) is 
given as 

a2 
120 

f = +jay2 - 3 ~ ~  +- y6 + O(y6), (3.6) 

where a = dU/dyl,,, = 1.232 587 has been determined by numerical integration. 
According to (3.5), the behaviour of the stream function far away from the wall 
(y + co ) is approximated as 

where Y = y-A, A = 0.6479004 has been determined by numerical integration and 
the function @(Y)  -to as Y +  00 and describes the rate a t  which f approaches its 
asymptotic form. The form of @ is obtained by substituting (3.7) into (3.2) and 
linearizing for small @. This results in an equation 

f + y+ @(Y) ,  (3.7) 

whose solution involves integrals of parabolic cylinder functions and a constant. The 
solution that satisfies the conditions for y --f co leads to the stream function in a form 

f =  Y + c , [ - Y - ~ +  1 0 ~ ~ ~ -  1 0 5 ~ - ~ + 0 ( ~ - ' ~ ) 1 e - ~ ~ * ,  (3.9) 

where the const,ant c1 = -0.645 has been determined by matching of (3.9) with a 
numerical solution inside the boundary layer. We note a very rapid approach of the 
stream function to its asymptotic form with an increase of distance away from the 
plate. 

The temperature field associated with a stagnation flow over a smooth plate 
( E  = 0) is described by (2.4d) with boundary condition (2.14) and one of either (2.9) 
or (2.11). The solution has the form 

T = 1 -B[exp(P.[ Vdy)dy 

in the case of an isothermal plate, and 

T = - E l  +I," exp (Pr  [ Vdy) dy 

(3.10) 

(3.11) 

21 FLM 216 
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in the case of a constant-heat-flux plate. The constant B is defined as 

J .  M .  Floryan and U. Dallmann 

B-' = 1; exp ( L P r  Vdy) dy (3.12) 

and has been tabulated for a few values of Prandtl number in Goldstein (1938). 
Explicit results are given in the present paper for a flow of air (Pr = 0.71) and a flow 
of water (Pr = 7.0) for which B = 0.4986628 and 1.178375 respectively. Variations 
of temperature in the neighbourhood of an isothermal plate are given as 

T = 1 - B[y - &u Pr y4 + &$'r y5 + O(y6)], y + 0, (3.13) 

and in the neighbourhood of a plate with a fixed heat flux 

T = - E l  + y -$a Pr y4 + & 9 r y 5  + O(y6), y +  0. (3.14) 

Variations of temperature outside the flow boundary layer and far away from the 
plate can be approximated as 

(3.15) 

for both types of plates. The constant c2 has been determined by matching of (3.15) 
with a numerical solution of (2.4d) inside the boundary layer; c2 = -0.448, -0.414 
in the case of an isothermal plate with Pr = 0.71, 7.0 respectively, and c2 = 0.899, 
0.351 in the case of a constant-heat-flux plate with Pr = 0.71, 7.0 respectively. We 
note again a very rapid approach to the asymptotic state with an increase of distance 
away from the plate. 

T = c2[ - Pr-l Y-l - 3IV3YP5 + O( Y-')] e-iPr yp, Y + 00 

4. Disturbance flow 
Modifications of the flow field caused by surface roughness are described by 

( 2 . 5 ~ 4 )  with boundary conditions (2.8) and (2.15). A general solution, valid for 
arbitrary values of the parameters, can be found only numerically and the 
appropriate procedure is described in $4.1. Explicit solutions, which have been found 
in the asymptotic limits of a + 0 and a+ 00 are described in $54.2 and 4.3 
respectively. 

4.1. Numerical procedure 
The functional form of the solution of the system (2.5) for large values of y can be 
determined explicitly. It is then sufficient to carry out the numerical calculation 
between y = 0 and y large enough for the asymptotic solution to be valid. 

In the limit y - t m ,  the basic flow assumes asymptotic form (3.7) and the 
disturbance equations simplify to  the form. 

dp (4 . la ,  b)  - dY2+Y-- (a2+2)a=0 ,  d2a  da -+Y--(a2-1)a=-- d2v da 
dY dY2 d Y  dY' 

d2@ dm du 
-+Y--a2m = up, 
d P  dY d Y  

@+--am = 0, (4.1 c, d) 

where the effects of the function 0 have been assumed to  be negligible. We note that 
the coupling between the 2-momentum, (2.5a), and the rest of the system is 
proportional to d2@/dY2 and is neglected in the above approximation. Equation 
( 4 . 1 ~ )  can be solved independently and its solution is expressible as a superposition 
of linearly independent parabolic cylinder functions, The explicit forms of these 
functions valid for large values of the independent variable can be found in 
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Abramowitz & Stegun (1965).  In  the limit Y+ 00, the solution of (4.1 a )  that satisfies 
the condition (2.15) has the form 

ti - b, e-fYaY-aP{ Y-, - 3 3  + a2) ( 4  +a2) YP5 

+6(3 + a2) (4 +a2) ( 5  +a2) (6  + a2) Y-' + O( Y-')}, (4 .2)  

where b, is an arbitrary constant. It is simpler to discuss the solution of the rest of 
the system by considering the x-component of vorticity first. The governing equation 
has the form 

d 2 d  do 
d P  d Y  
-+ Y-- (2- 1 )  d = 0 (4 .3)  

and its solution, which involves parabolic cylinder functions, can be expressed for 
Y + C O  as 

(4 .4)  

When a 2 1 ,  the solution proportional to constant b, does not satisfy the boundary 
conditions for Y+ co and has to be rejected, i.e. b, = 0. When a < 1, the boundary 
conditions are formally satisfied by both linearly independent solutions and this 
leads in a non-unique solution of the disturbance equations. The situation is 
analogous to the one found in the analysis of the stability of stagnation flow (Wilson 
& Gladwell 1978). It is resolved there by requiring the solutions to decay 
exponentially outside the boundary layer. The arguments put forward are : (i) since 
the main-stream vorticity decays exponentially outside the boundary layer, any 
disturbance vorticity that originates inside the boundary layer also has to decay 
outside the boundary layer exponentially, and (ii) the acceptance of the algebraically 
decaying term should lead to inconsistencies in the matching procedure between the 
inner and the outer flows a t  the higher level of approximation. The second argument 
has been put forward only in a qualitative form. The first argument clearly applies 
in the present case; the disturbance vorticity originates at the wall and i t  can 
penetrate upstream only by diffusion, hence it is natural to require exponential 
decay. The approaching flow contains no disturbances and, therefore, there is no 
need to speculate about their evolution as they approach the plate, i.e. there is no 
need to maintain algebraically varying terms. In addition, we expect the roughness 
effects to be qualitatively similar regardless of whether a > 1 or a < 1 .  Thus, we 
consider the part of the solution proportional to b, to be physically irrelevant and, 
accordingly, we set b, = 0. The conjecture about exponential decay of the 
disturbances is also supported by the results obtained in 84.3 in the limit a+ 00 

where the exponential decay comes explicitly out of the analysis. 

0 - b,e-~Y'Y-a'[l +O(Y-2)]+b, Ya"1[1+O(Y-2)]. 

We obtain an equation for by combining (4.1d) and ( 2 . 6 ~ ) :  

d2a d d  ~- a2a = -++ti. 
dY2 d Y  (4 .5)  

The homogeneous part of (4 .5)  brings in the solutions of the type eaY and ePay, with 
the former to be rejected in view of (2 .5) .  The inhomogeneous part of (4.5) can be 
determined by standard methods. The pressure and u-component can be determined 
by substitution into one of the field equations. The results for B, a, p and 0 fields that 
contain only exponentially decaying vorticity for Y + co and satisfy all the boundary 
conditions (2.15) are 

B - - b, ePay - b, a e-Zy Y-a'{ - YP2 + ;(a4 + 3a2 + 6 )  YP4 + O( Y-")) 
1 2  

(4 .6a)  

21-2 
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'v b5 e-ay + b, e-fY2Y-a2{ - y-1 +$(a4 + a2 + 2 )  y-3 

- [ia2(az + 1) (a' + 2 )  (a2 + 3) ++(a4 + a2 + 6)] YP5 + O( Y-,)} 

- b,  a e-iy2Y-"'( YP5 + O( Y-l)}, (4.6b) 

P - - b, Y-OrY - b,2a e-iyzY-a2{ y-3 + o( y-5)} 

- b, 4 e-tya~-a2(y-5 + o( Y-')}, (4.66) 

fi - 6 ,  e-iY2y-ae( 1 - taZ(a2 + 1) y-2 

+ +'(a2 + 1) (a2 + 2 )  (a2 + 3) Y-,  + o( Y - S ) } ,  (4 .6d)  

where b,, b,, 6 ,  are arbitrary constants to be determined from matching with a 
numerical solution inside the boundary layer. We note that parts of the solution 
proportional to b,  and b, produce no vorticity. 

Modifications of the temperature field caused by surface roughness are described 
by (2 .5e )  with boundary condition (2 .16)  and one of either (2.10) or (2.12). In  the 
limit Y + 00, outside the flow and thermal boundary layers, the disturbance equation 
reduces to 

(4.7) 

The solution involves parabolic cylinder functions and the part that satisfies (2.16) 
can be approximated as 

We note that Y % Pr-h for the above approximation to hold. 
For the purpose of numerical calculations we replace (2 .5)  with a system of first- 

order differential equations. Here we consider s1 = u, s2 = dtildy, s, = v, s4 = m, s5 = 
diijldy, s, = p to be unknowns. At a sufficiently large y, we assume that the first term 
in the' asymptotic series dominates and, accordingly, we assume the boundary 
conditions to be in the form 

s1 = -YS1, s5 = -as4, s6 = Ys,. (4.9a-c) 

It has been found through experimentation that i t  was sufficient to apply these 
boundary conditions a t  y no larger than 7.5 for the smallest value of wavenumber 
considered. When a was sufficiently large, the boundary conditions (2.15) were 
applied directly a t  a finite y without resorting to the asymptotic solution. This 
procedure has been followed for a > 4 with boundary conditions applied a t  y no 
larger than 4. As a check, an alternative system has been formed, where S, = a, s, = 

da/dy, S, = v, S, = dB/dy, S, = d2V/dy2, S, = d3@/dy3 were considered to be unknown. 
The appropriate boundary conditions for large y were 

- 
s2 = - Ys,, S, = -as,, S, = -as4. (4.10 a-c) 

Results obtained with both formulations agreed. As a further check, numerical 
results were compared with the analytical solutions obtained in the limits of a + 0 
and a+ 00. Again, a very good agreement was noted. 
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When the temperature field was desired, the ..original set of equations was 
supplemented by s, = 0, sg = dO/dy with boundary conditions a t  large y in the form 

sg = -Pr Ys,. (4.11) 

The temperature and velocity fields were then calculated simultaneously. 
The numerical algorithm used to solve the boundary-value problem involved 

varible-step-size finite-difference discretization with deferred corrections (Pereyra 
1979). The resulting algebraic system was solved by Gauss elimination. 

4.2. Small-wavenumber limit (a  + 0) 

The purpose of the analysis described in this section is to elucidate the structure of 
the disturbance field in the limit a+O. Since the thickness of the disturbance layer 
is O(a-'), in the limit it becomes large compared with the thickness of the flow 
boundary layer. The disturbance flow field can then be qualitatively divided into an 
outer part, which overlaps the potential flow, and an inner part or a disturbance 
boundary layer, which is induced by and overlaps the flow boundary layer. 

The limit a + 0 should not be interpreted as the one corresponding to  a smooth 
plate. No matter how small a is, one can always find z large enough to make az = 
0 ( 1 )  in (2.1) and thus to retain the spanwise periodicity of the flow. The results 
presented in this section should be viewed as describing a universal structure of the 
disturbance flow field for small but finite a. 

We begin the analysis by looking at  the outer part of the disturbance layer. The 
character of the solution can be deducted from (4.2) and (4.6), which suggest that 
a( - Y-3 e-iyz) is negligibly small compared with a, W ,  p( - eVaY) and can be dropped 
from the continuity equation (4.ld).  The set of equations to be considered is 

d2a dv dji d2m dm 
-+Y--(a2-1) =- ----+Y--aa2~=aji, (4.12a, b)  
d P  dY d Y '  d P  dY 

d2a 
dY2 

am = 0. ~- ( 4 . 1 2 ~ )  

One could carry out the required asymptotic analysis of (4.12) ; however, here we 
take advantage of the information contained in (4.6). The dominant solution is 
proportional to b,; it is an exact solution of (4.12) and it is good for any value of Y 
and a. The solution proportional to b,, which appears to be due to coupling with ti, 
does not arise in (4.12). Thus, in the limit a+0, the disturbances assume the form 

% z o o ,  ~ z - b ~ e - ~ ~ ,  U Z - U ,  p z Y g ,  az0, (4.13) 

where the omitted terms have the rate of decay a t  least proportional to e-fya. To 
determine the character of the solution a t  the edge of the flow boundary layer, we 
take the limit a + 0, Y = O( 1) and fixed, and replace the exponential functions in 
(4.13) with the appropriate expansions. Thus we obtain 

B z -b,[l -aY++a2Y2 + O ( a 3 ) ] ,  (4.14) 

where b, is an arbitrary constant to be determined by matching with the solution 
originating inside the flow boundary layer, and ti, W ,  p and fi are given by (4.13). 

We assume the solution inside the flow boundary layer to have the form 

Q =  qo++"p+O(a2), (4.15) 
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where q denotes any flow quantity. Substitution of (4.15) into ( 2 . 5 ~ 4 )  and (2.8) 
results in 

( 4 . 1 6 ~ )  
d2u, du dU 

Ll(U,,v,,wo,p,) = ~ - v ~ - 2 u u o - - v , ,  = 0, 
dY dY dY 

d2v dv dV dp, - 
dy2 dy dy dy 

L,(u,, v,, wo,p,) E 2- V O - - v  -- - 0, (4.16b) 

(4 .16~)  

(4.16d) 

It is a simple matter to write equations for higher-order corrections. Equation ( 4 . 1 6 ~ )  
decouples and has a general solution in the form 

(4.18) 

where d,, d, are constants to be determined from the boundary condition at, y = 0 and 
from matching with (4.13) and (4.14) outside the flow boundary layer. Elimination 
of uo and p ,  from (4.16a, b, d )  results in 

d3v, d2v dv dU 
~- V ~ - 2 U ~ + - v 0  = 0 
dy3 dy2 dY dY 

(4.19) 

whose solution satisfying the boundary condition (4.16e) is 

21, = u. (4.20) 

This can be demonstrated by taking dldy of ( 2 . 4 ~ )  and using (2.4c), which leads to 
an equation identical to (4.19). Equations (4.20) and (4.16d) imply 

dU 
UO = -- 

dY 
(4.21) 

and this result is consistent with the boundary conditions (4.16e). It can be shown 
in an analogous manner that 

dG dU 
po = d y + d ,  = ---'C'U+d,, 

dY 
(4.22) 

where d, is a constant to be determined from matching. 
Matching involves only v,, wo and p, ,  since ti is considered negligibly 

(exponentially) small outside the flow boundary layer. The component u, indeed 
decays exponentially, however a t  a rate slightly different from the complete solution 
given by (4.2). This is of no concern since u,, approximates a only inside the flow 
boundary layer, while outside ti x 0. It is perhaps simplest to demonstrate matching 
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by beginning with vo. In the limit y+ CO, vo x 1 and matching with the term O(uo) 
in (4.13) and (4.14) requires setting b, = - 1.  Pressure matching requires d, = 0, and 
matching of w results in 

I% 1 r u  \ 

where 

w o = - D J o e x ~ ( J 0  v ~ Y ) ~ Y ,  

D-' = Jomexp( [Vdy)dy = 0.5704653-', 

(4.23) 

which is similar to the expression for the basic temperature field with Pr = 1.0. The 
expression for vorticity is 

dwo - 
dY 

52, = - - --Dexp (4.24) 

It is interesting to note that a non-trivial solution of the disturbance equations exists 
because of an inhomogeneous boundary condition for a at the wall, (2.8); this is 
where the forcing term is. Inside the flow boundary layer in the limit a-tO this 
forcing affects directly only uo, vo and pa,  while wo, which is the only component 
giving rise to a streamwise vorticity, is driven by a coupling that exists only outside 
the flow boundary layer and has a vorticity-free character, e.g. (4.13). 

Corrections of O(u) are described by (4.17), where (4 .17~)  is decoupled. The explicit 
form of (4 .17~)  is 

and leads to a solution 
w1 = -v, 

(4.25) 

(4.26) 

which is consistent with the boundary condition (4.17e) and matches with (4.13) and 
(4.14). It is interesting to note that 

dw 
52, = - l - v o  = 0. 

dY 

One can eliminate u1 and p ,  from (4.17a, b, d )  and obtain 

d3v1 dzv dv dU -- v--1-2uL+-v1 = -2uw0, 
dy3 dy2 dY dY 

where the appropriate boundary conditions are 

dv1 - dv, - v ,=- -0  at y = o ,  - 
dY dY 

--1 a t  y + w .  

(4.27) 

( 4 . 2 8 ~ )  

(4.28b, c) 

The condition (4 .28~)  comes from the matching with (4.13) and (4.14). Solution of 
(4.28) requires numerical work. Component u, can be determined from (4.17d) with 
v1 known; i t  is easy to show without solving that the matching condition for u1 is 
satisfied. The equation for the pressure p1 is 

(4.29) 

and again it is easy to show without solving that the matching condition is satisfied. 
One could carry out a similar analysis for the corrections of O(u2) and higher. It is 
not described here since no explicit solutions have been found. 
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It is instructive to write uniformly valid, i.e. composite, expansions for the flow 
components. Following standard methods (Nayfeh 1973) one obtains 

(4.30a, 6 )  
d U  a=---+@a), 8 =  U+e-"g-l+O(a), 
dY 

= --D 1 exp ( 1 V d y) dy - e-ay + 1 + a[ - V--A e-"g + A  - y] + O(a2),  (4.30 C) 

d U  
dY 

F = - - VU+ ( y - A )  e-ny - y + A  + O( a ) ,  (4.30 d) 

= --Dexp( l P d y ) + O ( a Z ) .  (4.30 e )  

The limiting values of the wall stresses can be deduced by noting that p+a ,  
dm/dy+-D, da/dy+ 1 when a+O. Here D is given by (4.23). 

The behaviour of the disturbance temperature field outside the flow boundary 
layer is given by (4.8), which shows that the temperature disturbance is negligible 
(exponentially) small there. We assume the solution to have the form (4.15) inside 
the flow boundary layer, which leads to the following equation a t  the leading order 

O 0 = - -  d T  or - - 0  d@o - a t  y = 0 .  
dY dY 

(4.31 a )  

(4.31 b )  

(4.32) 

which can be demonstrated by taking d/dy of (2.4d) and using ( 2 . 4 ~ ) ;  the resulting 
equation is identical to (4.31 a) .  The solution (4.32) satisfies the wall boundary 
conditions in the cases of both isothermal and constant-heat-flux walls. It decays 
exponentially outside the flow boundary layer, however a t  a rate slightly different 
from the complete solution (4.8). It is of no concern, as in the case of the 
approximation for a, since 0, approximates 0 only inside the flow boundary layer, 
while outside Q x 0. Thus (4.32) provides a uniformly valid approximation for 6 
with error O(a).  

The limiting value of the increase of the heat flow a t  the surface of an isothermal 
plate can be deduced by noting that d@/dy(l/,,+O as a+0, and the limiting value 
of the change of the wall temperature in the case of a plate with a constant heat flux 
is given by noting that @ ( O )  + - 1 as a + 0. 

4.3. Large-wavenumber limit (01- 0 0 )  

The analysis described in this section explains the structure of the disturbance field 
in the limit u+ co. In  the limit, the thickness of the disturbance layer becomes small 
compared with the thickness of the flow boundary layer. The disturbance velocity 
field is then affected only by the properties of the mean flow in a small neighbourhood 
of the plate. As stated in $2, these results are valid only if a€ 4 1,  i.e. the height of 
the roughness has to be small compared with the thickness of the disturbance layer. 
The analysis has been carried out up to O(a?) to demonstrate that a simple 
approximation obtained by replacing the mean velocity U by a linear function is 
actually O ( K ~ )  accurate. 
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We begin the analysis by eliminating first derivatives of the dependent variables 
from the governing equations (2.5). Thus, we let 

(4.33) 

where q denotes any flow quantity. Then we introduce a new independent variable 

(4.34) 

which is equivalent to resealing the field equations with respect to the disturbance 
wavelength as a lengthscale. We also let 

p = a$. (4.35) 

Since disturbances are confined to a thin layer next to the wall, coe%cients in the 
equations .can be replaced by their Taylor expansions around the wall. The resulting 
equations have the following form : 

d24 
-+[- 1 -a-3~ay,-a:a-4~;+O(a:-6)]. i i  = [a-l~-a-~y,+O(a-~)]v",  ( 4 . 3 6 ~ )  
day; 

(4.26 b) 

( 4 . 3 6 ~ )  
d2iZ -+ [ - 1 - ~t-~iaay, + cc4;y: + 0(0l-~)] ,iij = $, 
dY? 

dv' 
a-%+-+ [ - ~ - 3 ~ ~ ; + a - 4 . i l z y : + ~ ( a : - s ) l ~ - ~  = 0. (4.36d) 

day1 

We now assume all flow quantities to be in the form 

= + "-lq1 + "-zq2 + a-3q3 + a-4q4 + o(a-5) (4.37) 

and, after substituting (4.37) into (4.36), we obtain a t  the leading order of 
approximation 

L1(uo,vo, w0,po) = y - u o  = 0, ( 4 . 3 8 ~ )  
A d2uo 

dY 1 

L12(uo,vo,wo,po) = 2 - V 0 - -  d2vo d$o - - 0, 
dY1 dY1 

.. dv0 
L4(uo,vo,wo,po)  = --wo = 0, 

dY 

(4.38b) 

( 4 . 3 8 ~ )  

(4.38d) 

uo = - a ,  vo = wo = O a t  y1 = O ,  (4.38e) 

u,+O, vO+O,  wo+O as y l + m .  (4.38f) 
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Higher-order equations can be found in the Appendix. The relevant solutions are as 
follows : u, = -aee-Y1, vo = 0, w,, = 0, $, = 0, (4.39) 

u, = 0, v, = ay,e-yl, w1 = -ayle-Y1, $, = 2ae-yl, (4.40) 

u, = 0, v 2  = 0, w2 = 0, 6, = 0, (4.41) 

u3 = &~~y,( 1 + yl) e-yi, w3 = 0, w3 = 0, $3 = 0, (4.42) 

where a = dU/dyl,,,. These solutions lead to the complete approximation for a, B, a, 
p and 0 in the form 

ti = [-a+ a-3a2y,(i+~y1 e-yi + O ( K ~ ) ,  ( 4 . 4 3 ~ )  

(4.43 b,  c) 

p = 2ae-yl+~(a-3), ~-2 = -ae-~1+0(a-3). (4.43d, e )  

One could carry out a similar analysis in terms of a, B, iij,  and the same results 
would be obtained without making an explicit assumption regarding the magnitude 
of the pressure. 

The basic flow affects the results only a t  the level O(aP3) ; here the coupling existing 
in the field equations at the level O(aP2) has been eliminated through imposition of 
the boundary conditions. Such elimination might not be possible when other types 
of boundary conditions like, for example, those corresponding to suction, are 
considered. It is interesting to note that in the present case U can be considered linear 
(and V parabolic) for approximations up to O(CZ-~)  inclusive. This suggests that one 
could obtain acceptable results for a close to unity by working with the full 
disturbance equations (2.6) and a simplified, i.e. linear, basic flow. Such a 
simplification formed the basis of an analysis carrigd out by Lighthill (1953) and 
Benjamin (1959) in the context of other flow problems. 

The limiting values of the wall stresses can be deduced by noting that p+2a, 
diij/dy+ -a, dti/dy+ --a, when a+ co. 

The analysis of the temperature field is similar to the analysis of the flow field. We 
apply the transformations and obtain 

B = a-lay, e-yi + 0 ( ~ - 4 ) ,  w = -a-layl e-y1 + 0 ( ~ - 4 ) ,  

- 

d 6  - 
- + [ - 1 - a-31$r ay, + aP4iPr yf + 0(01-~)] O = aP3Pr ay, e-gi + O(CZ-~) .  (4.44) 
dY2 

Following that, we assume 0 in the form (4.37) and obtain a sequence of equations 
describing 0,, O,, O,, etc., which are easy to  solve. These equations are listed in the 
Appendix. The complete solution in the case of an isothermal plate is 

(4.45) 
- 
O = B e-yi - a-3iZ‘r ayl[ 1 + 28 + ( 1 + 13) yl] e - Y 1 +  O(a-‘), 

where B is given by (3.12), and in the case of a constant-heat-flux plate is 
- 

@ =-a- 3iPra(l - +y,+~:)e-”1+0(ct-~). (4.46) 

The limiting value of the increase of the heat flux for an isothermal plate can be 
deduced by noting that d6/dyl,,, + - aB when a + 00, and the limiting value of the 
change of surface temperature of a plate with fixed heat flux can be deduced by 
noting that @(O) -+ 0 when a + co. 
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FIQURE 2. 
Cases (a) 

Topological 
(flat plate), 

str 
(b)  

,ucture of the stagnation flow over a plate with a wavy 
and ( c )  correspond to progressively larger amplitude 

surface roughness. 
of the roughness. 

5. Discussion 
It is known that in a two-dimensional stagnation flow a degenerate stagnation line 

forms along which the skin friction is zero everywhere. The results of the present 
study show that arbitrary small three-dimensional perturbations in the shape of the 
leading edge cause a sequence of critical points (where the direction of the wall shear 
stress and the velocity field are not determined uniquely) to appear along such a 
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FIGURE 3. Variations of the amplitude of the  x-velocity component a as a function of the 
wavenumber a. 
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0 0.5 l:o 
D 

FIGURE 4. Variation of the amplitude of the y-velocity component @ as a function of the 
wavenumber a. 

stagnation line. The topology of the flow is shown in figure 2. The topology is very 
simple in the case of a flat plate (figure 2 a ) .  Small waviness of the surface produces 
the three-dimensional structure sketched in figure 2 ( b ) ,  where only one full period in 
the z-direction has been displayed. The critical points A, and D,, which correspond 
to the ‘peaks’ of the roughness, exhibit a nodal point character in the (2, z)-plane and 
a saddle point character in the (y,z)-plane. In contrast, the critical point B,, 
corresponding to the ‘ bottom ’ of the roughness, shows a saddle point character in the 
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0 

FIGURE 6. Variations of the amplitude of the pressure field p as a function of the 
wavenumber a. 

(x, 2)-plane and a nodal point character in the (y, 2)-plane. The lines A, A,, B, B, and 
D, D, become separatrices. An increase of the amplitude of the roughness leads to a 
more pronounced but qualitatively similar flow structure, as shown in figure 2 (c). 
The flow does have a spanwise periodicity, but it does not develop into the form of 
counter-rotating vortex pairs. This can be seen in figures 3-7 displaying the velocity, 
pressure and vorticity fields. One should note that the m-component (figure 5) does 
not have zeros in the interior of the flow. It is also interesting to note that since the 
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0 -0.5 -1.0 

FIGURE 7 .  Variations of the amplitude of the 2-component of vorticity a as a function of the 
wavenumber a. 

line B,B, is a separatrix, one would expect a lift-off of the flow above this line due 
to conservation of mass. 

Further increase of the amplitude of the roughness could result in a qualitative 
change in the topology of the flow and could lead, for example, to the generation of 
counter-rotating vortices. The character of the new topology cannot, however, be 
predicted by the linear theory described in this paper. 

Flow disturbances are generated a t  the plate (figure 3) and are felt away from the 
plate, with the depth of this penetration being a strong function of the wavenumber 
a (figures 3-7). Here, disturbances generated by roughness of small wavenumber 
penetrate much further than disturbances generated by roughness of large 
wavenumber. The latter ones are limited to  a very thin layer within which a simplified, 
i.e. linear, form of the undisturbed velocity profile is acceptable. The limits of 
validity of such a simplification have been assessed by carrying out the calculation 
with a linear velocity profile for a 2 1.0 and by comparing results with those 
obtained with a complete velocity profile. It has been found that the error of surface 
quantities such as normal and shear stresses was not larger than 1 %. 

The asymptotic form of the disturbance velocity field in the limit a -+ 0 which has 
been determined in 54.2 is displayed in figures 3-7. The results show that the G 
velocity component and the vorticity a reach their asymptotic state very rapidly. 
These are the flow components that do not penetrate the region outside the flow 
boundary layer. The remaining flow components, i.e. c, @ and p ,  are O( 1)  outside the 
flow boundary layer and their evolution towards the asymptotic state with a -+ 0 is 
shown in figures 3-7. One should note that it is the long-wavelength waviness of the 
surface that is most difficult to eliminate in experiments (short-wavelength waviness 
can be eliminated by polishing). It is encouraging to  know that the corresponding 
flow field already has a universal character for a < 0.1, which corresponds to the 
magnitude of wavelength being of the order of the boundary-layer thickness. It can 
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FIGURE 8. Variations of the surface values of p ,  dw/dy and d@/dy as a function of the 
wavenumber a. Circles, squares and triangles denote computed points. 

be concluded that the character of the flow, as described by (4.30) and displayed in 
figures 3-7, is most likely to be observed in experiments. 

The character of the additional stress a t  the wall due to the presence of the surface 
roughness is described by (2.17). The calculated results do not exhibit any 
unexpected phenomena. They show an increase of shear acting on the ‘peaks’ of the 
roughness in the x-direction and an analogous decrease in the shear acting on the 
‘valleys’. There is an additional shear acting in the spanwise direction, and it acts 
from the peak towards the valley position. The net effect of shear is such that it 
would tend to eliminate the roughness in the case of erosion. The additional normal 
stress pushes the peaks downwards and it would tend to eliminate them if the plate 
were flexible. Variations of the wall stresses as a function of the wavenumber a can 
be deduced from the results shown in figure 8. The appropriate limits for a -+ 0 and 
a-+m have been given explicitly in $4.2 and $4.3, respectively. We note a rapid 
disappearance of Aurr and Aurz and equally rapid emergence of an asymptotic form 
of AgYs for a + 0. We also note the existence of the absolute upper limits for Auru and 
Auyz, which are reached for a -+ GO, and an unbounded (proportional to a )  growth of 
Auuz with a+ CO. The last result suggests that the flow would be more effective in 
eliminating short- rather than long-wavelength roughness through friction if erosion 
or ablation were admitted. 

The effects of roughness on heat transfer in the case of an isothermal plate are 
illustrated in figures 9-11 for two typical cases of Prandtl number, Pr = 0.71 (air) 
and Pr = 7 .0  (water). It is seen that the disturbances are limited to the interior of the 
thermal boundary layer. We note a rapid approach of the character of the 
temperature field towards a universal form given by (4.32) with a + O ,  the approach 
being more rapid for a fluid of large Prandtl number. The large wavenumber 
approximation provides a much better approximation in the case of a fluid of small 
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0 0.5 1 .o 
B 

FIGURE 9. Variations of the amplitude of the temperature @ as a function of the wavenumber a 
for Pr = 0.71 and an isothermal plate. 

0 0.5 - 1 .o 

FIGURE 10. Variations of the amplitude of the temperature 6 as a function of the 
wavenumber a for Pr = 7.0 and an isothermal plate. 

8 

Prandtl number, which is to be expected. The modification of the heat flow at  the 
surface of the plate is given by (2.18). The calculated results show that there is an 
increase of heat flow from the plate to the fluid around the peaks of the roughness 
and a corresponding rise in the temperature of the fluid above the peaks when the 
plate is being cooled by the fluid. The situation is similar in the case of a plate heated 
by the fluid except that the signs are reversed, i.e. there is an increase of heat flow 
into the wall at the peak. Thus, in all cases there is an increase of heat transport 
through the peak area, which is to be expected. Figure 11 shows that Aq, increases 
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FIQURE 12. Variations of the amplitude of the temperature 6 as a function of the 
wavenumber a for Pr = 0.71 and a constant-heat-flux plate. 

with an increase of the Prandtl number and that it is a strong function of the 
wavenumber a,  being negligible for small wavenumbers (lim d@/dyl,,, = 0 as a --f 0) 
and its amplitude growing proportionally to a for large wavenumbers 
(lim d@/dyl,-, = a dT/dy(,,, as a -+ 00) .  We note that the asymptotic solutions 
provide a good approximation of the surface heat flux over the whole range of 
variations of a, with the error increasing with an increase of the Prandtl number. 

The effects of roughness on heat transfer in the case of a plate with a constant heat 
flux are illustrated in figures 12-14 for the same values of Prandtl number. The 
qualitative behaviour of the disturbance field is similar to the previous case, i.e. the 
disturbances are limited to the interior of the thermal boundary layer; there is a 
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FIGURE 13. Variations of the amplitude of the temperature @ as a function of the 

wavenumber u for Pr = 7.0 and a constant-heat-flux plate. 

rapid approach of the temperature field towards an asymptotic form with a + 0 ; this 
approach is more rapid for fluids of a large Prandtl number; and the large- 
wavenumber approximation is better in the case of small-Prandtl-number fluids. The 
modification of the wall temperature is given by (2.19). The calculated results show 
an increase of the wall temperature in the peak area and a decrease of fluid 
temperature above the peak in the case of heat flowing into the wall. When the heat 
flow changes direction, the peak becomes colder and the fluid above it becomes 
hotter. Thus the peak areas of a heated plate and the valley areas of a cooled plate 
can be subjected to overheating. Figure 14 shows that AT, increases with a decrease 
of the Prandtl number and that it is a strong function of the wavenumber a, being 
negligible for small wavenumbers (lim @(O) = -1 as a+O) and its amplitude 
approaching unity for large wavenumbers (lim @(O) = 0 as a + co). 

Surface roughness could be responsible for permanent damage to the surface of the 
plate. The possible mechanism involves generation of thermal stresses due to 
redistribution of heat flow into the peaks of the roughness, as discussed above. In  the 
limit a --f 00, thermal gradients increase at a rate no less than O(a)  and could become 
large enough to cause surface cracking. 

I n  order to compare sensitivity of the wall shear stress and heat transport to the 
presence of surface roughness, relative changes of crgg [el = ax-l(d%/dylg=o- 1) sin 
(az)], heat flux through an isothermal plate [e, = E(dO/dyl,,,/(d_T/dyJ,_,)) sin (az)] 
and temperature of a plate with a constant heat flux [e3 = ~ ( 1  + O(O))/T(O) sin (az)] 
were evaluated. The numerical values for a = 1 .O are e, = 0 . 4 4 ~  sin z ,  e2 = 0.91~ sin z ,  
0.72Aesinz and e3 = -0.43~sinz, -0.59~sinz for Pr = 0.71, 7.0 respectively, and 
show a somewhat higher sensitivity of heat transport compared to the sensitivity of 
the shear stress to the presence of roughness. This sensitivity decreases with an 
increase of Prandtl number in the case of an isothermal plate and increases in the case 
of a constant heat flux plate. 

The results discussed above provide a complete and detailed picture of the 
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FIGURE 14. Variations of surface value of 0 as a function of the wavenumber a, 
Circles and squares denote computed points. 

structure of the flow and the temperature fields associated with surface roughness. 
An interesting question arises regarding the stability of such a flow and this question 
could be addressed on its own merits. Here, we would like to point out a possible role 
which surface roughness could play in the instability of the stagnation flow. It is well 
known that three-dimensional longitudinal (i.e. aligned in the z-direction) vortex 
pairs can be observed in the stagnation regions of cylinders (Morkovin 1979). It is 
also known that while stagnation flows are linearly stable (Wilson & Gladwell 1978), 
the secondary flows could be generated by the so-called vorticity amplification 
mechanism (Sutera et al. 1963; Sutera 1965; Sadeh, Sutera & Maeder 1970), which 
requires the presence of a certain type of disturbance in the oncoming flow. The 
presence of a vorticity-amplification-type mechanism has been confirmed by recent 
experiments (Kottke 1986 ; Bottcher 1987) showing that the vortex structures could 
be found in the stagnation region only if disturbances produced by screens were 
present in the oncoming flow. The spacing of the vortex pairs was found to be equal 
to that of the jets in the wake of the screens. Thus, the flow in the stagnation region 
was merely an image of the flow downstream of the screen. Surface roughness 
provides an alternative way of introducing disturbances into the flow and it is 
postulated here that these disturbances could grow and lead to the appearance of a 
secondary flow without the presence of external disturbances in the oncoming flow. 
It has been shown in $4.2 that surface roughness influences the flow far upstream if 
the wavenumber a is sufficiently small. The surface-roughness-generated dis- 
turbances could then trigger an amplification process, where the initial stages of the 
spatial amplification outside the boundary layer would be governed by the solution 
proportional to constant b, in (4.4). Here the only condition for existence of the 
spatial amplification would be a < 1, as discussed in $4.1. This condition is similar 
to the one found in the vorticity amplification theory (Sutera et al. 1963). It should 
be noted that while the process postulated above is likely, its existence requires an 
experimental verification. 

Surface roughness acts as a source of steady streamwise vorticity, as shown in 
figure 7. Such vorticity is one of the possible ways of forcing boundary-layer 
instability (Morkovin 1988 ; Herbert 1988). It has been demonstrated by Wilkinson 
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& Malik (1985) that in the case of rotating disk flow the well-known growing spiral 
vortices were driven by surface roughness. The leading-edge roughness analysed here 
could provide a similar path for the receptivity problem. 

The first author wishes to acknowledge the financial sponsorship of the Alexander 
von Humboldt Foundation of the Federal Republic of Germany and the Natural 
Sciences and Engineering Research Council of Canada. 

Appendix 
Equations describing disturbance velocity and pressure fields in the limit a + 00. 

Order a-': 

d20, - -o ,=o,  O,=B or *=o a t  y1=0,  O,+O as yl+oo.  
dw: dY1 ._ 

(A 5a+) 

Higher-order equations could be written in a similar way. We note that the basic flow 
effects only appear in the equations O(a2)  and higher. 

Equations describing disturbance temperature field. 
Order ao: 
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Order a-l: 
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(A 6a-c) 
Order a-2 : 

d202 dO 
~- 0 2 = 0 ,  0, = O  or 2 ' 0  at y1=0 ,  0 2 + 0  as yl+co. 
dY: dY1 

Order a-,: 

0 3 + 0  as yl+cO. 

d20, -_ 0, = Pray,O,-$Pray:O,, 
Order aP4: 

dY: 

dO 
O , = O  or A = O  at y1=0 ,  04+0  as yl+cO. 

dY 1 

Higher-order equations could be written in a similar way. 
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